

18W+18W STEREO AMPLIFIER WITH MUTE & ST-BY

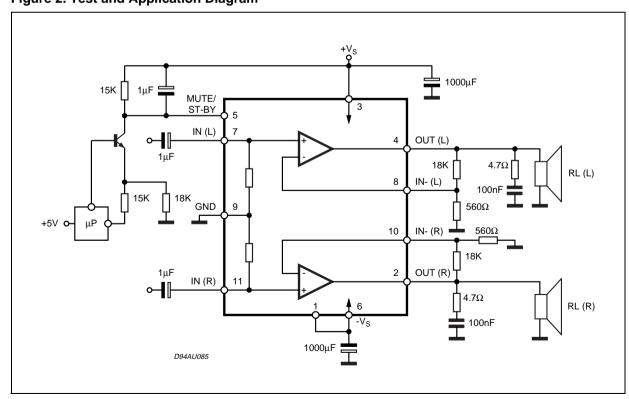
1 FEATURES

- WIDE SUPPLY VOLTAGE RANGE (UP TO +25V ABS MAX.)
- SPLIT SUPPLY
- HIGH OUTPUT POWER 18+18W @THD = 10%, $R_L = 8\Omega$, $V_S = \pm 17.5V$
- NO POP AT TURN-ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW I_a)
- SHORT CIRCUIT PROTECTION TO GND
- THERMAL OVERLOAD PROTECTION
- CLIPWATT 11 PACKAGE

2 DESCRIPTION

The TDA7265SA is class AB Dual Audio Power amplifier assembled in the @ Clipwatt 11 package, specially designed for high quality sound ap-

Figure 1. Package


Table 1. Order Codes

Part Number	Package
TDA7265SA	Clipwatt11

plication as Hi-Fi music centers and stereo TV sets.

The TDA7265SA is pin to pin compatible with TDA7269, TDA7269A, TDA7269SA, TDA7265, TDA7499. TDA7499SA.

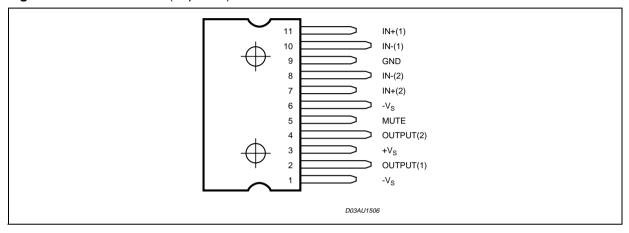

Figure 2. Test and Application Diagram

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	±25	V
lo	Output Power Current (internally limited)	4.5	А
P _{tot}	Total Power Dissipation (Tamb = 70°C)	30	W
T _{amb}	Ambient Operating Temperature (1)	0 to 70	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

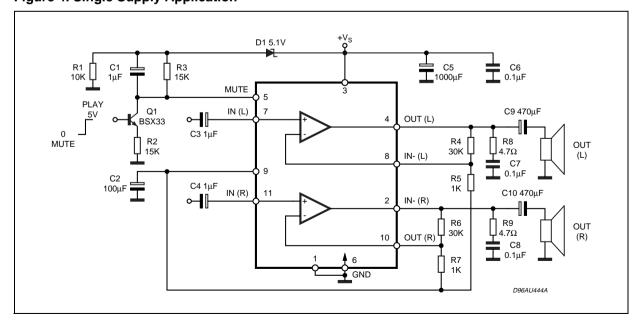

Figure 3. Pin Connection (Top view)

Table 3. Thermal Data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	max = 3	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	48	°C/W

Figure 4. Single Supply Application

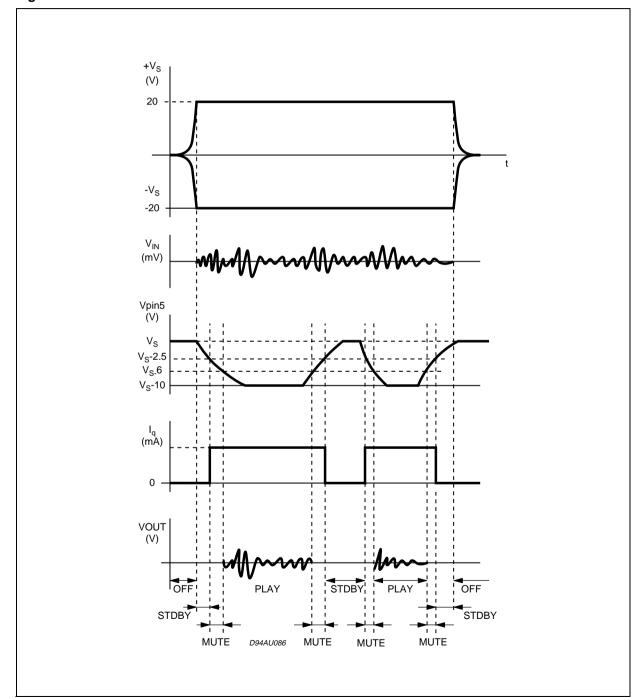
47/

Table 4. Electrical Characteristcs

(Refer to the test circuit $V_S = \pm 17.5V$; $R_L = 8\Omega$; $R_S = 50\Omega$; $G_V = 30 dB$, f = 1 KHz; $T_{amb} = 25 ^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		±5		±25	V
Iq	Total Quiescent Current			80	130	mA
Vos	Input Offset Voltage		-20		20	mV
I _b	Non Inverting Input Bias Current			500		nA
Po	Output Power	$\begin{aligned} &THD = 10\%;\\ &R_L = 8\Omega;\\ &V_S = \pm 13V; \ R_L = 4\Omega; \end{aligned}$		18 18		W W
		$THD = 1\%;$ $R_L = 8\Omega;$ $V_S = \pm 13V; R_L = 4\Omega;$		13 13		W W
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$; $f = 1KHz$;		0.03		%
		$R_L = 8\Omega$; $P_O = 0.1$ to 5W; $f = 100$ Hz to 15KHz;			0.7	%
		$R_L = 4\Omega$; $P_O = 1W$; $f = 1KHz$;		0.02		%
		$R_L = 4\Omega; V_S = \pm 10V;$ $P_O = 0.1 \text{ to } 5W;$ f = 100Hz to 15KHz;			1	%
Ст	Cross Talk	f = 1KHz; f = 10KHz;		70 60		dB dB
SR	Slew Rate		6.5	10		V/µs
G _{OL}	Open Loop Voltage Gain			80		dB
e _N	Total Output Noise	A Curve f = 20Hz to 22KHz		3 4	8	μV μV
Ri	Input Resistance		15	20		ΚΩ
SVR	Supply Voltage Rejection (each channel)	$f = 100Hz; V_R = 0.5V$		60		dB
Tj	Thermal Shut-down Junction Temperature			145		°C
MUTE FU	NCTION [ref +V _S] (*)					
V _{MUTE}	Mute /Play threshold		-7	-6	-5	V
A _{MUTE}	Mute Attenuation		60	70		dB
STAND-B	STAND-BY FUNCTIONS [ref: +V _S] (only for Split Supply)					
V _{ST-BY}	Stand-by Mute threshold		-3.5	-2.5	-1.5	V
A _{ST-BY}	Stand-by Attenuation			110		dB
I _{qST-BY}	Quiescent Current @ Stand-by			3	6	mA
	-	-				

^(*) In mute condition the current drawn from Pin 5 must be ≤650 μ A



3 MUTE STAND-BY FUNCTION

The pin 5 (MUTE/STAND-BY) controls the amplifier status by two different thresholds, referred to +Vs.

- When V_{pin5} higher than = $+V_S$ -2.5V the amplifier is in Stand-by mode and the final stage generators are off.
- When V_{pin5} between = +V_S -2.5V and V_S -6V the final stage current generators are switched on and the amplifier is in mute mode.
- When V_{pin5} lower than = + V_{S} -6V the amplifier is play mode.

Figure 5.

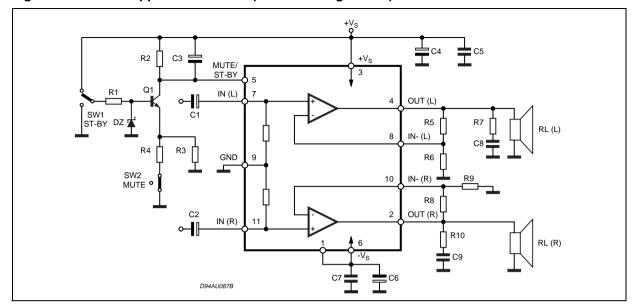


Figure 6. Test and Application Circuit (Stereo Configuration)

4 APPLICATION SUGGESTIONS (DEMO BOARD SCHEMATIC)

The recommended values of the external components are those shown the demoboard schematic different values can be used, the following table can help the designer

Table 5..

COMPONENT	SUGGESTION VALUE	PURPOSE	LARGER THAN RECOMMENDED VALUE	SMALLER THAN RECOMMENDED VALUE
R1	10ΚΩ	Mute Circuit	Increase of Dz Biasing Current	
R2	15ΚΩ	Mute Circuit	V _{pin} #5 Shifted Downward	V _{pin} #5 Shifted Upward
R3	18ΚΩ	Mute Circuit	V _{pin} #5 Shifted Upward	V _{pin} #5 Shifted Downward
R4	15ΚΩ	Mute Circuit	V _{pin} #5 Shifted Upward	V _{pin} #5 Shifted Downward
R5, R8	18ΚΩ	Closed Loop Gain	Increase of Gain	
R6, R9	560Ω	Setting (*)	Decrease of Gain	
R7, R10	4.7Ω	Frequency Stability	Danger of Oscillations	Danger of Oscillations
C1, C2	1μF	Input DC Decoupling		Higher Low Frequency Cutoff
C3	1μF	St-By/Mute Time Constant	Larger On/Off Time	Smaller On/Off Time
C4, C6	1000μF	Supply Voltage Bypass		Danger of Oscillations
C5, C7	0.1μF	Supply Voltage Bypass		Danger of Oscillations
C8, C9	0.1μF	Frequency Stability		
Dz	5.1V	Mute Circuit		

^(*) Closed loop gain has to be ≥25dB

5 PC BOARD

Figure 7. Evaluation Board Top Layer Layou

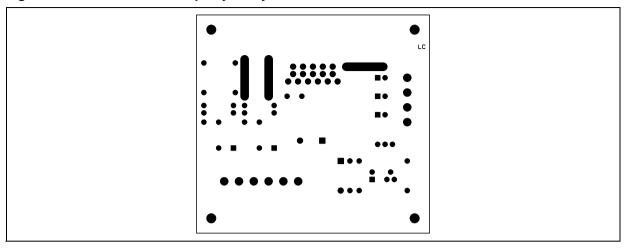


Figure 8. Evaluation Board Bottom Layer Layout

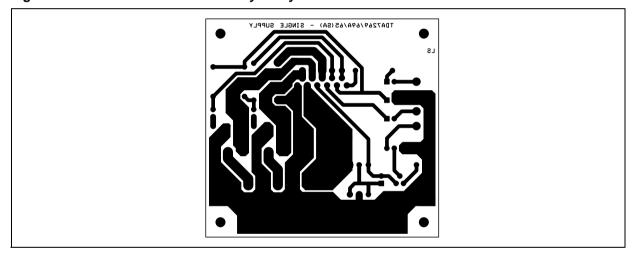
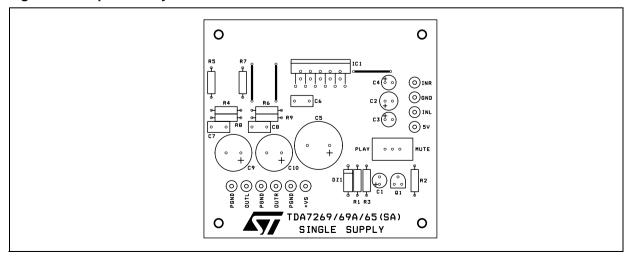



Figure 9. Component Layout

47/

Figure 10. Quiescent Current vs. Supply Voltage

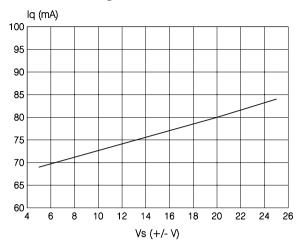


Figure 11. Frequency Response

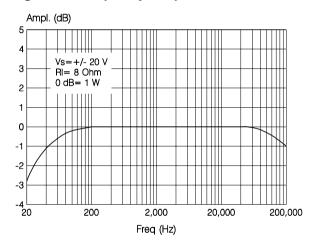


Figure 12. Output Power vs. Supply Voltage

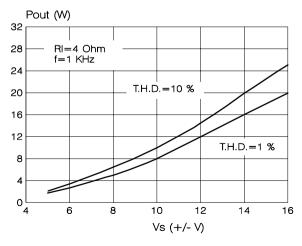


Figure 13. Output Power vs. Supply Voltage

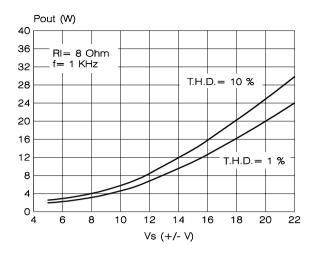


Figure 14. Quiescent Current vs. Pin #5 Voltage

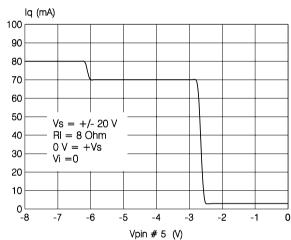


Figure 15. Attenuation vs. Pin #5 Voltage

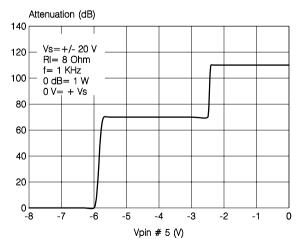


Figure 16. SVR vs. Frequency

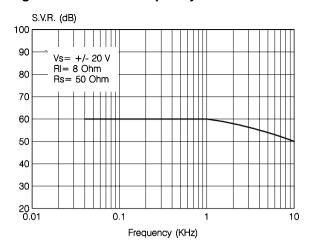


Figure 17. Attenuation vs. Pin #5 Voltage

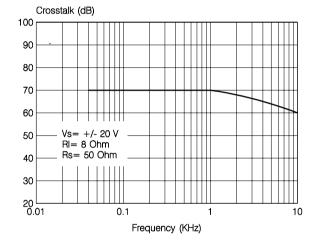


Figure 18. Power Dissipation vs. Output Power

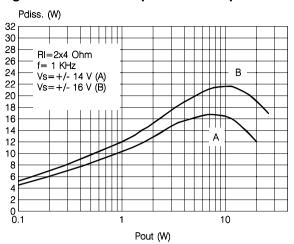
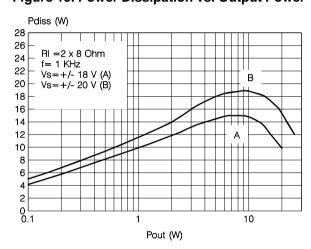



Figure 19. Power Dissipation vs. Output Power

6 HEAT SINK DIMENSIONING:

In order to avoid the thermal protection intervention, that is placed approximatively at $T_j = 150$ °C, it is important the dimensioning of the Heat Sinker R_{Th} (°C/W).

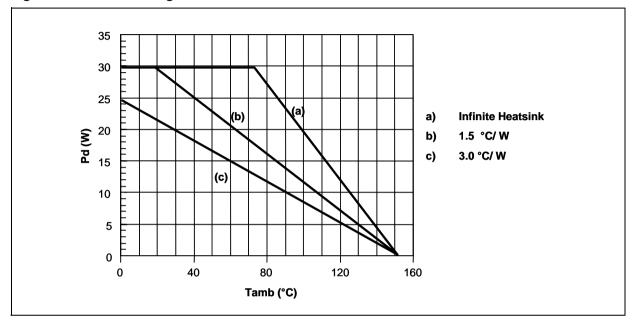
The parameters that influence the dimensioning are:

- Maximum dissipated power for the device (P_{dmax})
- Max thermal resistance Junction to case (R_{Th i-c})
- Max. ambient temperature T_{amb max}
- Quiescent current Ia (mA)

Example:

$$V_{CC} = \pm 17.5V$$
, $R_{load} = 80$ hm, $R_{Th j-c} = 3$ °C/W, $T_{amb max} = 50$ °C

$$P_{dmax} = (N^{\circ} \text{ channels}) \cdot \frac{2V_{cc}^{2}}{\Pi^{2} \cdot R_{load}} + I_{q} \cdot V_{cc}$$


47/

$$P_{dmax} = 2 \cdot (7.7) + 1.0 = 16 W$$

(Heat Sinker)
$$R_{Th\ c-a} = \frac{150 - T_{amb\ max}}{P_{d\ max}} - R_{Th\ j-c} = \frac{150 - 50}{16} - 3 = 3.25^{\circ}C/W$$

In figure 20 is shown the Power derating curve for the device.

Figure 20. Power derating curve

7 CLIPWATT ASSEMBLING SUGGESTIONS

The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much as possible in the plastic body center, as indicated in the example of figure 21.

A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink.

A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum contact pressure of 15 Kg/mm² between it and the plastic body case.

As example, if a 15Kg force is applied by the clip on the package, the clip must have a contact area of 1mm² at least.

Figure 21. Example of right placement of the clip

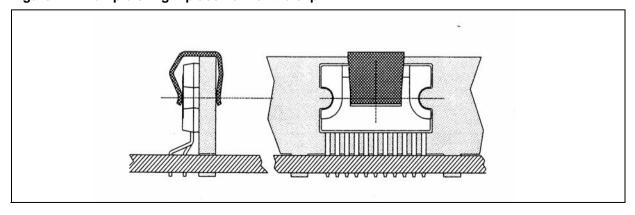
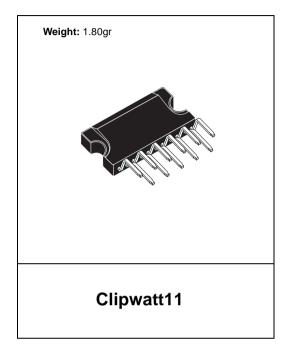
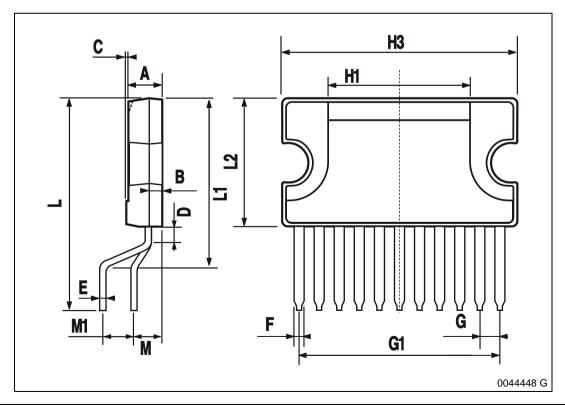




Figure 22. Clipwatt11 Mechanical Data & Package Dimensions

DIM.		mm		inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			3.2			0.126
В			1.05			0.041
С		0.15			0.006	
D		1.5			0.059	
Е	0.49		0.55	0.019		0.002
F	0.77	0.8	0.88	0.030	0.031	0.035
F1			0.15			0.006
G	1.57	1.7	1.83	0.062	0.067	0.072
G1	16.87	17	17.13	0.664	0.669	0.674
H1		12			0.480	
H2		18.6			0.732	
НЗ	19.85			0.781		
L		17.9			0.700	
L1		14.55			0.580	
L2	10.7	11	11.2	0.421	0.433	0.441
L3		5.5			0.217	
М		2.54			0.100	
M1		2.54			0.100	

OUTLINE AND MECHANICAL DATA

Table 6. Revision History

Date	Revision	Description of Changes
September 2003	1	First Issue
July 2004	2	Changing of the Style-sheet. Changed the maturity from Product Preview to Final.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

